

- 工学院
李晓
李晓,男,山东泰安人,硕士研究生导师。2021年获华东理工大学动力工程及工程热物理专业工学博士学位。从事先进金属结构材料的设计制备与使役性能研究,主持和参与了国家自然科学基金、浙江省“尖兵领雁”计划等纵向项目,在Nature Communications、Acta Materialia、Materials Research letters等期刊发表SCI论文20余篇。欢迎机械工程领域的研究生报考。
联系方式:zjhulx@zjhu.edu.cn
研究方向:(1)异构金属材料的调控 (2)面向严苛服役环境的材料和机械结构性能评价和预测
主要科研项目:
(1)国家自然科学基金项目,52405152,2025-2027;(主持)
(2)湖州市科学计划项目,2022YZ27,2023-2025;(主持)
(3)湖州市科技特派员项目,2022-2024;(主持)
(4)特种布料智能化生产关键技术,2024-2029;(主持)
(5)高性能工业铝型材制造关键技术研发,2021-2026;(主持)
(6)3D打印涡轮盘破裂转速仿真分析,2022;(主持)
(7)浙江省“尖兵领雁”计划项目,2022C01132,2022-2024;(参与)
(8)管材成型智能装备研发,2021-2026;(参与)
(9)基于印刷工艺的柔性电子器件产业化研发,2022-2027;(参与)
获奖及荣誉:
(1)“浙北英才”A类计划
(2)第十一届中国机械工程学会材料分会青年工作年会优秀报告奖
(3)湖州师范学院招生先进个人
学术与技术兼职:
(1)Coatings期刊客座编辑
(2)Surface & Coatings Technology、Results in Engineering等期刊审稿人
近3年发表论文:
(1)Guan, B., Xu, J., Fu, R., Xu, S., Li, X.(通讯作者), Jia, Y., ... & Xin, Y. (2025). Significantly extending the gradient layer and mechanical properties of Mg alloys by texture optimization. Materials Research Letters, 1-8.
(2)Li, X., Wang, W., Dai, Y. B., Zhu, Q. Q., Jia, Y. F., Ran, H. F., ... & Peng, T. (2025). A novel combined gradient structure to achieve superior strength–ductility synergy in precipitation-strengthened A286 alloy. Journal of Alloys and Compounds, 1030, 180894.
(3)Guan, B., Li, X.(通讯作者), Xu, J., Guo, J., Feng, X., Feng, B., & Hu, Q. (2024). Study the deformation behavior of Cu-Fe laminated composite using the experimental characterization and crystal plasticity finite element modeling. Materials Science and Technology, 02670836251348381.
(4)Wang, Z. M., Li, X. (通讯作者), Cheng, D. Y., Tao, J. P., Chen, X. F., Chen, B. G., ... & Yao, X. L. (2025). Preparation and fatigue properties of gradient-structured Ti-6Al-4 V alloy with good surface integrity. Canadian Metallurgical Quarterly, 1-9.
(5)Zhang, Y., Jia, Y. F., Zhang, Y., Li, X., Zhang, K. M., Tian, H. L., ... & Xuan, F. Z. (2025). Incorporating erosion and manufacturing defects in unified fatigue life models for additively manufactured TiB2/Al-Si composites. International Journal of Fatigue, 198, 108999.
(6)Yang, X., Lu, T., Li, X., He, C., Zhang, X. C., Chen, H., & Tu, S. T. (2025). Microstructural effects on shock-induced deformation behavior in CoCrNi medium-entropy alloy: A molecular dynamics study. Journal of Materials Science & Technology.
(7)Zhang, Y., He, C., Yu, Q., Li, X., Wang, X., Zhang, Y., ... & Tu, S. T. (2024). Nacre-like surface nanolaminates enhance fatigue resistance of pure titanium. Nature Communications, 15(1), 6917.
(8)Wang, Z. M., Jia, Y. F., Cai, J. D., Cui, Y. Y., Li, X., Zhang, X. C., & Tu, S. T. (2024). Strain-rate and size dependence of gradient lamellar nickel investigated by in-situ micropillar compression. Journal of Materials Research and Technology, 32, 3269-3279.
(9)Peng, W., Li, X. (共一), Gao, J., He, C., Zhang, Y., Lu, T., ... & Tu, S. (2024). Abnormal grain growth behavior in gradient nanostructured titanium investigated by coupled quasi-in-situ EBSD experiments and phase-field simulations. Acta Materialia, 276, 120141.
(10)唐沛, 张勇, 贾云飞, 李晓, & 汪永纪. (2024). 双峰结构纯钛的低周疲劳性能研究:试验和模拟. 机械工程学报, 60(12), 228-239.
(11)Li, X., Guan, B., Wang, Y. L., Wei, Y. L., & Li, B. (2023). Ascertaining the microstructural evolution and strengthening mechanisms of the gradient nanostructured pure titanium fabricated by ultrasonic surface rolling process. Surface and Coatings Technology, 473, 130047.
(12)Li, X., Guan, B., Yang, X. F., Zhang, Y., & Jia, Y. F. (2023). Optimizing strength and ductility synergy achieved by multistage strain hardening in gradient recrystallized pure titanium. Materials Characterization, 205, 113333.
(13)Xu, J., Guan, B., Xin, Y., Li, X., Wu, P., Huang, X., & Liu, Q. (2023). The mechanism for Li-addition induced homogeneous deformation in Mg-4.5 wt.% Li alloy. International Journal of Plasticity, 170, 103763.
(14)Guan, B., Li, X.(共一), Xu, J., Fu, R., Yan, C., Huang, J., ... & Hu, Z. (2023). Mechanical and corrosion behavior of a composite gradient-structured Cu-Fe alloy. Metals, 13(7), 1304.
发明专利:
(1)复合梯度结构A286铁基合金板材及其制备方法,CN202510418989.6;
(2)一种镍基单晶高温合金表面性能优化的超声滚压表面强化方法,CN202210166136.4;
(3)一种超声滚压强化参数归一化方法,CN202111600230.8;
(4)一种中熵合金板材的超声滚压表面强化工艺,CN202010892938.4;
(5)纯镍纳米层片结构的织构对拉伸性能影响的分子模拟方法,CN202210565709.0;
(6)一种适用于不同疲劳试验机的多功能疲劳试验夹具,CN202210314184.3;
(7)一种板状试样的疲劳试验夹具,CN202210166169.9.